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1 Proof of the Slepian-Wolf Theorem and Introduction to
Channel Coding

1.1 Proof of the Slepian-Wolf theorem

Last time, we were proving the Slepian-Wolf theorem. We had an iid sequence of pairs
(Xi,Y5) ~ (p(z,y),z € Z',y € #). Alice and Bob had respective encoding maps
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and a fusion center tries to decode the pairs of messages using the decoding maps
dp : [MI] x [MP)] — 2™ x o™,
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We called the rate pair (Ry, R2) achievable if there exist ((eg,,l), eg), dn),n > 1) such that
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Theorem 1.1 (Slepian-Wolf). The set of achievable rate pairs is
{(R1,R2) R >H(X |Y),Re >H(Y | X),Ri+ Ry > HX,Y)}.
We set up the proof of achievability using a random binning argument.

Proof. Achievability: By a diagonal-type argument, it suffices to consider (Rj, R2) such
that R1 > H(X |Y)+¢e, Ro > H(Y | X) +¢,and R + Ry > H(X,Y) +¢. The idea is to
let MY = [27F1] and MP = [27F2] . Define random eV and € via:



. 67(11) randomly assigns each z{ € Z™ to one of My(Ll) bins uniformly, indepndently
over x7,

(2)

) eg) randomly assigns each yi' € #™ to one of My~ bins uniformly, indepndently over

Yl
o d, (m%l), mi )) (7, x) if there is exactly one (Z7,97) € A((;n) with e;”(:}:\?) =miV
and e!? )@"f) =m?. Otherwise, d,, (m,(1 ),mg)) can take any value.
We have the probability (over randomness in (X7, Y7") and in (e%l), 6%2)))

P(dn(ef) (X1, e (Y]) # (X7, Y(") < P(Eon) + P(Evn) + P(Ezp) + P(Eizs),

where

Fon = {(X7,V7) ¢ A},

By = {337 # X7 with e) (3]) = el (X]) and (a7, y7) € AP},
o ={377 # X] with ) (@7) = eV (XT) and (@7, y7) € AP},
Eion = {391 # Y7" with enz)( yy) = 67(12)(3/171) and (z7,y7) € Ana)}7

Ei9n ={3(a7,97) s.t. 27 # X7, 97 # Y/,
eD @) = eN(XT), @ (F7) = D (VP), @, 77) € AMY.
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We saw that the probabilities of the first three events goes 0 to as n — oo if we pick 20 < €.
It remains to show that P(E12,) — 0 as n — co. Write
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Bring the expectation inside the sum, where the expectation of the inside is just a product
of probabilities
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< 2nH(X,Y)2n62fnR1 277LR2 .

So if € > 4, this goes to 0 as n — oo because Ry + Ry > H(X,Y) + ¢ by assumption.

Converse: Consider any scheme ((eg), eg), dp),n > 1) for which the error probability

vanishes asymptotically. Letting Wil = e%l)(X{L) and W,?) = e!? (Y7"), we have
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Let pgn) = IP’(()?{‘, }71”) # (X7, Y")). We have by Fano’s inequality that
HXP, Y | WY, W#) < h(p(?) + pl™ (log | 27" +log |#/|"),

so if pé") — 0 then H(X7, Y | W,E”,Wéz)) < ne, for some &, — 0 as n — oo. Then,
recalling that R; = %log MT(LI) and Ry = %log M,QQ),

n(Ry + Ry) > HWD, w(2)
= 1(X7 Y7 WO, w®) + HWD, Wi | X7,y
= H(X!",Y")— H(X{, Y| V[/él)7 WTEQ))
>nH(X,Y) —nep.
But we also have
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which gives
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where we can throw W7(LQ) in for free.

>nH(X |Y)—nep.



Similarly, Ry > H(Y | X) —ne,. Now divide by n and let n — oo to get the lower bounds.
This gives
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1.2 The discrete memoryless channel model for data transmission

At each time, the transmitter sends a symbol x € 2", and the receiver gets y € # according
to the conditional probabilities (p(y | X),x € &,y € ¥).

Example 1.1 (Binary symmetric channel). The receival probability is 1 — p, so
H(1|0)=p0[1)=p, p1[1l)=p0]0)=1-p
Definition 1.1. A communication scheme is a sequence ((ey,d,),n > 1) such that
en: [My] — 27", dp : X" — [M,)].

Definition 1.2. Communication is possible at rate R if there exis t((ey, d,),n > 1) with

1
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and
P(dn(en(Wy)) # Wp) —— L 0,

where W,, ~ Unif([M,,]).

Theorem 1.2 (Shannon’s channel coding theorem). The supremum over all rates at which
communication is possible is

ply | =)

sup I(X;Y) sup p(z)p(y | x) log .
(p(x),0e2) ( T () ) Z | p(x) > p(x)py | ')
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